5 research outputs found

    No Code AI: Automatic generation of Function Block Diagrams from documentation and associated heuristic for context-aware ML algorithm training

    Full text link
    Industrial process engineering and PLC program development have traditionally favored Function Block Diagram (FBD) programming over classical imperative style programming like the object oriented and functional programming paradigms. The increasing momentum in the adoption and trial of ideas now classified as 'No Code' or 'Low Code' alongside the mainstream success of statistical learning theory or the so-called machine learning is redefining the way in which we structure programs for the digital machine to execute. A principal focus of 'No Code' is deriving executable programs directly from a set of requirement documents or any other documentation that defines consumer or customer expectation. We present a method for generating Function Block Diagram (FBD) programs as either the intermediate or final artifact that can be executed by a target system from a set of requirement documents using a constrained selection algorithm that draws from the top line of an associated recommender system. The results presented demonstrate that this type of No-code generative model is a viable option for industrial process design.Comment: 2022 7th International Conference on Mechanical Engineering and Robotics Researc

    MERGING SUBJECT MATTER EXPERTISE AND DEEP CONVOLUTIONAL NEURALNETWORK FOR STATE-BASED ONLINE MACHINE-PART INTERACTIONCLASSIFICATION

    Full text link
    Machine-part interaction classification is a key capability required by Cyber-Physical Systems (CPS), a pivotal enabler of Smart Manufacturing (SM). While previous relevant studies on the subject have primarily focused on time series classification, change point detection is equally important because it provides temporal information on changes in behavior of the machine. In this work, we address point detection and time series classification for machine-part interactions with a deep Convolutional Neural Network (CNN) based framework. The CNN in this framework utilizes a two-stage encoder-classifier structure for efficient feature representation and convenient deployment customization for CPS. Though data-driven, the design and optimization of the framework are Subject Matter Expertise (SME) guided. An SME defined Finite State Machine (FSM) is incorporated into the framework to prohibit intermittent misclassifications. In the case study, we implement the framework to perform machine-part interaction classification on a milling machine, and the performance is evaluated using a testing dataset and deployment simulations. The implementation achieved an average F1-Score of 0.946 across classes on the testing dataset and an average delay of 0.24 seconds on the deployment simulations.http://deepblue.lib.umich.edu/bitstream/2027.42/169573/1/honors_capstone_report_hao_wang.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169573/2/capstone_ppt_hao_wang.ppt

    Toward an Automated Learning Control Architecture for Cyber-Physical Manufacturing Systems

    No full text
    Manufacturers are constantly looking to enhance the performance of their manufacturing systems by improving their ability to address disruptions and disturbances, while reducing cost and maximizing quantity and quality. Even though innovative mechanisms for adaptability and flexibility continuously contribute to the smart manufacturing evolutionary process, they generally stop short of providing a capability for coordinated on-line learning. This is especially true when that learning requires exploration outside of established operational boundaries or uses artificial intelligence (as opposed to purely human intelligence) as part of the dynamic implementation of learning. In this work, we provide a vision for the development of an automated learning control architecture to extend the adaptability and flexibility capabilities of manufacturing systems. As part of this vision, we describe a set of requirements and objectives that, if addressed, provide an environment to allow distributed and automated learning across the manufacturing ecosystem. We then provide an example communication and control architecture that meets these requirements and objectives by gathering information, building a dynamic knowledge base, distributing intelligence, making decisions, and adapting the control commands sent to the equipment and people across the manufacturing ecosystem. The example architecture leverages both centralized and distributed control strategies and the ability to switch between the strategies to gather and learn from information in the system. Example case studies are provided illustrating how this architecture can be used to improve manufacturing system performance.ISSN:2169-353
    corecore